Online and Global Network Optimization with SDN Jérémie Leguay Traffic and Network Optimization Team Mathematical and Algorithmic Sciences Lab Huawei Technologies, Paris

www.huawei.com

June 2017

Outline

- Introduction on SDN
- Path computation algorithms
- Network optimisation: offline algorithms
- Network optimisation: online algorithms

The (new) paradigm: SDN

Traditional networking

HUAWEI TECHNOLOGIES CO., LTD. Fra

France Research Center

Page 3

Software-Defined Networking

Global and Online Network Optimization in SDN

- Main properties of SDN / PCE
 - Offload the control plane to (powerful) external x86 servers
 - Provide network programmability through abstractions
- Operational benefits
 - Advanced automation
 - Global optimization and control

Network efficiency **10 times**

- Huawei solutions
 - Agile Controller, T-SDN

Routing systems in next generation controllers

Built-in Machine Learning is coming

Time Series Data Repository in ODL

https://wiki.opendaylight.org/view/Project_Proposals:Time_Series_Data_Repository

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Proprietary - Restricted Distribution Page 6

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture:Clustering

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Proprietary - Restricted Distribution Page 7

Routing systems in next generation controllers

Intelligence (ML) Defined Network

https://www.ietf.org/mailman/listinfo/idnet

Algorithmic framework in routing solvers

At large scale and online

HUAWEI CONFIDENTIAL

内部资料 注意保密

Page 10

Routing Problems for SDN "solvers"

A large set of requirements to meet

- Multi- constraints Path Computation
 - Single, Disjoint paths, SRLGs
- Network optimization
 - Single layer, Multi-layer (IP + Optical)
- Point to multi-point (Multicast)
- Bandwidth calendaring
- Multipath flow splitting
- Service Chaining, VNE..
- Reroute Sequence Planning

• Leading to hard problems

 Path computation, resource allocation, scheduling, placement, etc...

Bandwidth Calendaring

Online Routing Optimization Challenge

• Solving an evolving instance of an optimization problem

- Demands arrive and depart, congestions and failures happen
- Limited time to compute a feasible solution at each step → possibly not enough time to converge to the optimal point.
- **Sequential discovery of demands** \rightarrow compete with the offline optimal.

What to accept and where?

Is there a better allocation?

Outline

- Introduction on SDN
- Path computation tool box
- Network optimisation algorithms
- Online algorithms

PageAWEI TECHNOLOGIES CO., LTD.

CONSTRAINED PATH COMPUTATION

OVERLAY ROUTING FOR FAST VIDEO TRANSFERS IN CDN. IEEE IM 2017 P. MEDAGLIANI, S. PARIS; J. LEGUAY, L. MAGGI IEEE IM 2017

HUAWEI TECHNOLOGIES CO., LTD. Huawei Proprietary - Restricted Distribution Page 14

Multi Constraints Shortest Path

Single demand (commodity) d = (s, t)

- s = source
- t = destination (target)
- d(p) = **delay** of path p connecting s-t
- {w₁(p), w₂(p), ...,w_m(p)} = m additive weight functions (jitter, pLoss, etc.)

MCSP (Multi Constraints Shortest Path) Problem:

MCSP is NP-Complete

$$\min \left\{ d(p) \colon p \in P_{st} \land w_1(p) \leq \Delta_1 \land w_2(p) \leq \Delta_2 \dots \land w_m(p) \leq \Delta_m \right\}$$

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Confidential

CSK(k) problem formulation

- K+1 addictive weigths (e.g., jitter, packet loss)
- For each path p define

> Delay
$$d(p) = \sum_{(u,v)\in p} d_{uv}$$

• Other metrics
$$W_i(p) = \sum_{(u,v)\in p} W_{uv}^i$$
 $i = 1, 2, ..., k$

GOAL: Find a minimum delay feasible s-t path

$$\min \sum_{p}^{p} d(p)x_{p}$$
s.t
$$\sum_{p}^{p} x_{p} = 1$$

$$\sum_{p}^{p} w_{i}(p)x_{p} \leq r_{i} \quad i = 1, 2, ..., k$$

$$x_{p} \geq 0 \qquad \forall p \in P_{st}$$

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Confidential

Relaxation of the original problem

• Define the Lagrangian function as

$$L(\Lambda) = \min_{p \in P_{st}} \left\{ d(p) + \sum_{i=1}^{k} \lambda_i (w_i(p) - r_i) \right\}$$

Maximizing multiplier is defined as

$$\Lambda^* = \arg \max_{\Lambda > 0} L(\Lambda)$$

GEN-LARAC algorithm

Step 1: $\Lambda^0 \leftarrow (0, 0, ..., 0); t \leftarrow 0; flag \leftarrow true; B \leftarrow 0$ Step 2: (Coordinate Ascent Steps) while (flag) $flag \leftarrow false$ for i = 1 to k $\gamma \leftarrow \arg \ \max_{\xi \geq 0} L(\lambda_1^t, \dots, \lambda_{i-1}^t, \xi, \lambda_{i+1}^t, \dots, \lambda_k^t).$ if $(\gamma \neq \lambda_i^t)$ then $flag \leftarrow true$ $\lambda_j^{t+1} = \begin{cases} \gamma & j = i, \\ \lambda_i^t & j \neq i, \end{cases}, j = 1, 2..., k$ $t \leftarrow t+1$ end if end for end while **Step 3:** If Λ^t is optimal then return Λ^t . **Step 4:** $B \leftarrow B + 1$ and go to Step 5 if $B < B_{max}$ (B_{max} is the maximum number of iteration allowed); Otherwise, stop. Step 5: Compute a new vector Λ^+ such that $L(\Lambda^+) > L(\Lambda^t)$. **Step 6:** $t \leftarrow t + 1$, $\Lambda^t \leftarrow \Lambda^+$, and go to Step 2.

Ying Xiao, Krishnaiyan Thulasiraman, Guoliang Xue, "GEN-LARAC: A Generalized Approach to the Constrained Shortest Path Problem Under Multiple Additive Constraints", 2005.

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Confidential

Verification of optimality

- Step 3 requires verification of optimality
- This can be accomplished by solving the following linear problem where $P_{\lambda} = \{P_1, P_2, ..., P_k\}$ is the set of Λ -minimal paths.
- If this problem is feasible, than Λ is a maximizing multiplier

Complementary slackness

max 0

s.t
$$\sum_{\substack{p_j \in P_{\Lambda} \\ p_j \in P_{\Lambda}}} u_j w_i(p_j) = r_i \quad \forall i, \lambda_i > 0$$
$$\sum_{\substack{p_j \in P_{\Lambda} \\ p_j \in P_{\Lambda}}} u_j w_i(p_j) \le r_i \quad \forall i, \lambda_i = 0$$
$$\sum_{\substack{p_j \in P_{\Lambda} \\ u_j \ge 0}} u_j = 1$$
$$\forall j, p_j \in P_{\Lambda}$$

Performance – Number of accepted demands Evaluation in a CDN overlay network

Performance – Running time Evaluation in a CDN overlay network

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Proprietary - Restricted Distribution Page 21

Other techniques: Dynamic programming source current node traversed domains Augmented Graph current domain NDIPath constraints while respective fulfilled constraints adjacent node traversed domains next domain fulfilled constraints **BFS OPT** destination

- Shortest Path on Augmented graph (BFS opt) (optimal, slow) 1.
- 2. Breadth First Search (BFS) (always gives a feasible, suboptimal solution)

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Proprietary - Restricted Distribution Page 22

Other techniques: Pre-computation – A* Algorithm

- Informed search algorithm
 - Also called best first search algorithm
- Selects the path that minimizes

$$f(n) = g(n) + h(n)$$

- *n* is the last node on the path
- \square g(n) is the cost of the path from the start node to n
- h(n) is a **heuristic** that estimates the cost of the cheapest path from *n* to the goal.

Outline

- Introduction on SDN
- Path computation algorithms
- Network optimisation algorithms
- Online algorithms

PageA2VEI TECHNOLOGIES CO., LTD.

BANDWIDTH CALENDARING

BANDWIDTH CALENDARING: DYNAMIC SERVICES SCHEDULING OVER SOFTWARE DEFINED NETWORKS LAZAROS GKATZIKIS, STEFANO PARIS, IOANNIS STEIAKOGIANNAKIS, SYMEON CHOUVARDAS IEEE ICC 2016

火 HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Confidential

Bandwidth Calendaring

Context: Inter-datacenter networks

- > Deployed by cloud companies operating geo-distributed datacenters
- Need to support bulky and predictable traffic across datacenters (map reduce operations, database synchronization, etc.)

Main problem

- > Find feasible transfers in time and space
- > At scale (high demands, large networks)

HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

Bandwidth Calendaring

• **Problem:** Optimal scheduling and routing of future bandwidth reservations

• Input parameters:

- > Network topology
- > Current network state at T_0 (paths and bandwidth allocated to existing demands)
- Future arrivals along with their time-varying requirements (bandwidth demand changes on certain time points)

- **Control:** allocation of paths and schedule to each demand
- **Objective:** min rejection ratio
- Secondary objective: min routing cost

HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

Page 27

Problem Formulation – Demands

- Traffic profile is a vector where each element represents the bandwidth requested in the corresponding phase
 - > Strict request
- $\Rightarrow b_k a_k + 1 = q_k$
- > Elastic request $\rightarrow b_k a_k + 1 > q_k$

Problem Formulation – Input & Variables

• Input parameters:

Notation	Meaning
c _e , b _e	Cost (delay) and capacity of link e
d _{kf}	Bandwidth of demand k during time f
a _k , b _k	Start and end time of demand k
q _k	Duration of demand k ($q_k \le b_k - a_k + 1$)
P _e	Set of paths using link e
P _k	Set of paths available for demand k

• Variables (binary):

Notation	Meaning
X _{pt}	Starting time of utilization of path p
y _{et}	Temporal utilization of link e

- We have to use <u>disjoint sets of paths</u> for different <u>demands</u> (otherwise x_{pt} represents the aggregated traffic)
 - > Same physical path available to multiple demands \rightarrow multiple virtual paths

HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

Problem Formulation – Used Capacity

HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

ILP Formulation

• Solving time increase sharply with the problem size.

• **Solution**: Solve the **LP formulation** and **round** the solution afterward.

 If we are lucky, no rounding is needed (or just a small number of variables must be rounded up/down).

HUAWEI TECHNOLOGIES CO., LTD. France

France Research Center

Page 31

Challenges – Complexity

<u>Memory</u>

- Assuming traffic profile with granularity of 15 min, 5k links, and 250k demands we have :
 - \rightarrow |E| |T| = 5k * 0.1k = 500 k capacity constr.
 - \rightarrow |K| = 250 k scheduling constr.
- 750k total constraints
 - > Basis matrix = $(750k)^2 * 4$ byte = **2.25 Tbyte**...
 - > OK, 250k demands are too many... But $(500k)^2 * 4$ byte = **1 Tbyte**...

Joint Scheduling & Routing

Challenges – Rounding

• The linear relaxation may lead to **splitting over paths** and **over time**

- Need for new **rounding** mechanisms
 - > **Post-processing**: exploration of possible schedules and selection of a single starting time

Decoupling Scheduling and Routing

• <u>Problems</u>:

- > Problem size is too huge.
- > Splitting over time and paths (poor relaxation, rounding is difficult)
- **Solution**: Decouple the scheduling and routing
 - > Schedule the demands to load balance the use of the network over time.
 - > Solve the routing only with strict demands.
- Operating only with strict demands makes the problem simpler
 - > For each demand we have to compute a path on a single graph.
 - > We do not have to deal with the splitting over time.

Decoupled Scheduling & Routing

HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

Performance evaluation

Scalability tests Network size (600 nodes, 6000 links)

HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

FLOW SPLITTING / LOAD BALANCING

GLOBAL OPTIMIZATION FOR HASH-BASED SPLITTING PAOLO MEDAGLIANI, JÉRÉMIE LEGUAY, MOHAMMED ABDULLAH, MATHIEU LECONTE, STEFANO PARIS IEEE GLOBECOM 2016

火 HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

Why flow splitting?

- Flow splitting
 - Helps to balance traffic or accept more traffic
 - Improves reliability in case of failures
- Current solutions: equal splitting
 - ECMP Even split on equal cost paths
- Hash-based splitting for unequal splitting
 - Only a limited set of possible splits are possible
 - Forwarding rules are stored in precious "buckets"
- Main problem
 - Find a feasible solution that maximizes the throughput and min cost.
 - The problem is not linear and extremely hard even to approximate.

Hash-based splitting

^[1] K. Kannan, S. Banerjee, *"Compact TCAM: Flow entry compaction in TCAM for power aware SDN",* Distributed Computing and Networking, 2013

Hash-based splitting

- The larger the number of buckets the better the flow distribution accurately models a fractional ideal
- The distribution of flow volume amongst the paths is constrained by the use of a limited number of TCAM entries

Iterative scaling approach

- Column Generation on the unconstrained prob.
- A rounding phase to find a feasible allocation
- Network capacity scaling by different factors α
- Run in parallel several instances
- Iterate to allocate remaining demands

Path allocations close to the optimal solution

HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

500

MULTICAST ROUTING

HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

Multicast routing for live video streaming

- For each multicast service, compute a tree from a source to a given set of destinations under some constraints
 - » Inclusion/Exclusion, Available bandwidth, Delay/Hop limitation
- Goal: maximize the admitted traffic (primary) and minimize the total trees cost (secondary), respecting the given constraints

Multicast service :

- Source node
- A set of destination nodes
- Bandwidth
- Max delay
- Max # hops
- Optional Steiner points

HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

Lagrangian Relaxation

- For any $\lambda \ge 0$ (Lagrangian multipliers), the program LLBP provides a lower bound to the original problem.
- The best multipliers are computed using the subgradient method.

Multicast for Video

HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

Sub-gradient based algorithm

1. Heuristic algorithm (initial feasible solution)

2. Repeat

- a. Solve decomposed subproblems
- b. Aggregate subproblems
- c. Compute subgradient
- d. Update stepsize
- e. Update Lagrangian multipliers
- f. Normalize Lagrangian multiplers

Until (no improvement) and (timeout is expired)

4. Feasibility step

Pre-processing

Subgradient Method

Post-processing

Slow and (sometimes difficult) convergence, but highly parralelizable and small memory footprint

HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

Page 47

Outline

- Introduction on SDN
- Path computation algorithms
- Network optimisation algorithms
- Online and anytime algorithms

HUAWEI TECHNOLOGIES CO., LTD.

ADMISSION CONTROL

ADMISSION CONTROL WITH ONLINE ALGORITHMS IN SDN J LEGUAY, L MAGGI, M DRAIEF, S PARIS, S CHOUVARDAS IEEE NOMS 2016

HUAWEI TECHNOLOGIES CO., LTD. Huawei Proprietary - Restricted Distribution Page 49

Admission Control Problem

- □ Immediately accept if room (mainly for video or voice) → here our objective is to maximize the overall throughput over time
- Planning tools to use max-, min-, exclusive- and nonexclusive- limits on resource portions for different classes of flows.

 does not capture traffic dynamic

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Proprietary - Restricted Distribution Page 51

Online Algorithms for Covering / Packing Problems

- Problem objective
 - \square Consider an input sequence $\sigma,$ OPT is the offline optimum
 - Find an algorithm A such that:

Cost problems	Benefit problems	
$\forall \sigma \ A(\sigma) \leq C^* OPT(\sigma)$	$\forall \sigma \ A(\sigma) \geq \frac{1}{C} * OPT(\sigma)$	

C is the competitive ratio

- Worst-case algorithms
 - [Awerbuch, Azar, Plotkins 93] O(log V) competitiveness
 - Framework for covering and packing problems [Buchbinder05, Naor 06]
- Beyond worst case (stochastic) algorithms
 - [Kesselheim, STOC 14', Agrawal, SODA 15']

Never applied as they require a central execution (Now possible in SDN!)

Primal-Dual AAP – log(n) competitive Using Primal / dual framework for online packing [Naor'06]

$$x_e(t) = \frac{1}{n} \exp\left(\frac{\ln(1+n)}{u_e} \sum_{i} \sum_{p \in \mathcal{P}_i | e \in p} f(i, p) \cdot r_i(t)\right) - \frac{1}{n}.$$

Can be transformed with multiplicative updates (Naor06):

Algorithm 4 Primal-Dual AAP Algorithm [7], [12]

```
Initialize x_e = 0

function ROUTE(request j)

if \exists a path P \in \mathcal{P}_j of cost < 1 in the graph weighted

by x_e. then

Route request j on P

for each edge e \in P do

x_e = x_e \exp \frac{\ln(1+n)r_j}{u(e)} + \frac{1}{n} (\exp \frac{\ln(1+n)r_j}{u(e)} - 1)

end for

else

Reject request j

end if

end function
```


Expert Algorithms

- Opportunity
 - SDN Controller Platforms
 have tremendous
 computation power
 - Boosting techniques from
 Machine Learning can be
 used to solve online
 optimization problems

• Main idea

- As no individual AC algorithms is good in every traffic conditions
- Use expert meta-algorithms to keep track of the best CAC algorithms

Online algorithms for Admission control in SDN

Performance evaluation

- Much better than Greedy (Accept all flows until there is no resources left)
- > No algorithms is best in all traffic conditions

• Expert-algorithms to learn the best one

- SDN Controller Platforms have tremendous
 computation power
- > Used in Machine Learning, Boosting
 techniques are good candidates to solve
 optimization problems

Reduction of 25% to 100% of the rejected demands

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Proprietary - Restricted Distribution Page 56

ROBUST TRAFFIC ENGINEERING ONGOING WORK WITH POLIMI (ANTONIO CAPONE)

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Proprietary - Restricted Distribution Page 57

Robust Traffic Engineering

Methods to deal with traffic uncertainty

• Two extreme solutions to reconfigure the network after traffic changes:

Methods to deal with traffic uncertainty

HUAWEI CONFIDENTIAL

内部资料 注意保密

Robust Traffic Engineering

■ Two extreme solutions to reconfigure the network after traffic changes:

Traffic Engineering Under Uncertainty

• Linear programming:

- Fast and optimal, but only with respect to the worst case.
- Sensitive to variations of input (small variations can have huge effects).

• Stochastic optimization:

- Robust, but huge problem to be solved.
- Sensitive to the definition of the uncertainty (it needs exact historical data).

Robust Traffic Optimization

• Pros:

- Robust Optimization (RO) simplifies modeling and optimization under uncertainty.
- **RO** is **less sensitive to** low accuracy of **uncertainty** (noisy historical data/measurements).
- **RO** permits to **reuse** fast **LP solvers** (like FlowEngine).
- Challenges:
 - How to **divide regions** for robust optimization \rightarrow Reconfigurations vs. optimality.

Robust Traffic Optimization

Robust routing for different clusters considers jointly:

- Temporal continuum of TMs
- Space continuum of TMs
- Similarity of routing solutions applied to close TMs
- Temporal overlap among clusters leaves time to anticipate network reconfiguration

This region leaves time to

- 1. Observe the evolution of the traffic
- 2. Decide whether to reconfigure
- 3. Decide what to prefetch

Dynamic TE (today: diurnal) te Dynamic TE (today: diurnal) te

 $\mathbf{\hat{U}}$

will cause congestion

- Follow the direction of TM
- Anticipate the reconfiguration

In this **region both TE configurations** and and works with **a service/performance guarantee**.

内部资料 注意保密

Page 64

REAL-TIME FAIR RESOURCE ALLOCATION

REAL-TIME FAIR RESOURCE ALLOCATION IN DISTRIBUTED SOFTWARE DEFINED NETWORKS ZAID ALLYBOKUS, KONSTANTIN AVRACHENKOV, JÉRÉMIE LEGUAY, LORENZO MAGGI ITC 2017

HUAWEI TECHNOLOGIES CO., LTD. Huawei Proprietary - Restricted Distribution Page 65

Fair Resource Allocation Over Time MPLS for dynamic IP traffic

- Each LSP is configured by RSVP with a given amount of allocated bandwidth
- How do we configure the bandwidth on a particular LSP?
 - After all, IP networks are dynamic and packet switched.
 - Bandwidth usage can change and be unpredictable.

Reference:

https://www.nanog.org/sites/default/files/tues.general.steenbergen.autobandwidth.30.pdf

Adjust bandwidth more efficiently

Our objectives in a nutshell

- Considering a set of flows carrying dynamic IP traffic
- The goal is to maximize utilities
 - Network utility (e.g., average amount of routed traffic)
 - Avoid needless bandwidth reservations
 - User utility (e.g., average traffic per user)
 - Avoid congestions or packet losses
 - Ensure fairness
- Quickly react to sudden traffic changes
- Be ready for distributed SDN architectures

Fair resource allocation

- Considering a set of flows *R* carrying dynamic IP traffic over a network of already established routes:
- The goal is to allocate resources to the set of flows while ensuring fairness:

$$U_{\alpha}(x) = \sum_{r} w_{r} \frac{x_{r}^{1-\alpha}}{1-\alpha}, \alpha \neq 1, \quad U_{1}(x) = \sum_{r} w_{r} \log x_{r}, x \in \mathbf{R}_{++}^{|R|}$$

- A spectrum of fairness levels according to specific objectives: max-min $(\alpha=inf)$, proportional $(\alpha=1)$, max-throughput $(\alpha=0)$, min delay $(\alpha=2)$, ...
- Weights w_r may determine operational priorities of flows, accumulated traffic backlogs ...

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Confidential

Utility maximisation problem

Network of N nodes and J bi-directed edges (links). Each link j has a capacity of $C_j \in \mathbf{R}_+$. A set R models:

- a set of requests $r \in R$ with a weight $w_r \in \mathbf{R}_+$ and utility function U_r
- a set of routes $r \in R$ s.t. $r = \{j_1, \ldots, j_t\} \subset J$

Equivalently:

$$\min\sum_{r\in R}g_r(x_r) \text{ s.t. } Ax \le C$$

where $A = (a_{jr})_{jr}$ is the linkroute incidence binary matrix:

$$a_{jr} = \begin{cases} 1 & \text{if } j \in r \\ 0 & \text{otherwise.} \end{cases}$$

In our study: $g_r = g_r^{\alpha} = -U_r^{\alpha}$. g_r is convex, non decreasing, proper and closed.

Contribution vs SoTa

- State of the art: Lagrangian methods
 - Slow convergence rate O(1/n²)
 - Violates feasibility
 - We could use projected sub-gradient but convergence is slower
- Our work: Distributed algorithm based on ADMM
 - Fast convergence rate: O(1/n) in general and <u>linear</u> when the problem is strongly convex
 - Anytime algorithm: feasible solutions at all iterations
 - Well adapted to distributed SDN architectures
 - No need for compute intensive operations (i.e, global projection)

Tools: convex optimization, utility maximisation, online optimization

HUAWEI TECHNOLOGIES CO., LTD.

Fast Distributed ADMM (FD-ADMM)

ADMM Step	C-ADMM	FD-ADMM
Utility maximization step	Distributed	Distributed
Feasibility optimization step	Centralized	Distributed
Variables update step	Distributed	Distributed

CONTROLLING ROUTING RECONFIGURATION

CONTROLLING FLOW RECONFIGURATIONS IN SDN S PARIS, A DESTOUNIS, L MAGGI, GS PASCHOS, J LEGUAY IEEE INFOCOM 2016

HUAWEI TECHNOLOGIES CO., LTD. Huawei Proprietary - Restricted Distribution Page 73

Flow programming is slow (HW, control plane)

Messages Backlogged and Delayed! Google

https://www.usenix.org/sites/default/files/conference/protected-files/atc15_slides_mandal.pdf

Stability vs Optimality in Routing Systems

- System considerations
 - Flow programming in HW is slow
 - Control plane can only satisfy a limited reconfiguration rate
 - Routing solver issues a sequence of feasible solution

Main problem

→ Acheive a good trade off between optimality and network stability

Solution #2 Adaptive pre-filtering policy

• Toolbox: Liapunov Optimization, virtual queues

We proposed a drift-plus-penalty strategy that minimizes routing cost while keeping the reconfiguration rate below a threshold

- Average routing cost: random (4975), periodic (5279), Optimal (4578)
- The optimal policy minimizes the cost while meeting the target reconfiguration rate

HUAWEI TECHNOLOGIES CO., LTD. Huawei Proprietary - Restricted Distribution Page 77

Conclusion

• SDN looks at flow problems under new perspectives

- Large problem instances
- Under time constraints
- Using commodity servers
 - Distributed and parallel computing
 - Machine Learning

• Toolbox

- Combinatorial optimization
- Online and expert algorithms
- Convex optimization
- Robust and stochastic optimization

Selected publications from the team

- P. Medagliani, J. Leguay, M. Abdullah, M. Leconte, S. Paris.
 Global Optimization for Hash-based Splitting. IEEE Globecom 2016. Best paper award.
- "Domain Clustering for Inter-Domain Path Computation Speed-Up", by L. Maggi, J. Leguay, J. Cohen, P. Medagliani. Networks, Journal (submitted)
- "Virtual Function Placement for Service Chaining with Partial Orders and Anti-Affinity Rules". Z. Allybokus, N. Perrot, J. Leguay, L. Maggi, E. Gourdin. Networks, Journal. 2017.
- "Minimum Cost SDN Routing with Reconfiguration Frequency Constraints", A. Destounis,
 S. Paris, L. Maggi, G. Paschos, J. Leguay. IEEE Infocom 2016
- "Online Bandwidth Calendaring: On-the-Fly Admission, Scheduling, and Path Computation". M. Dufour, S. Paris, J. Leguay, M. Draief. ICC 2017
- "Fair Distributed Resource Allocation in Software Defined Networks". Z. Allybokus, K. Avrachenkovy, J. Leguay, L. Maggi. ITC 2017.
- "Overlay Routing for Fast Video Transfers in CDN" by P. Medagliani, S. Paris, J. Leguay, L. Maggi, X. Chuangsong, H. Zhou. IEEE IM 2017.
- A Closed/Open-Loop cache update strategy by peeking into the future. L. Maggi and J. Leguay. Computer Communication Journal. 2017.
- Lorenzo Maggi, Lazaros Gkatzikis, Georgios Paschos, Jeremie Leguay. Adapting Caching to Audience Retention Rate: Which Video Chunk to Store?. Under submission.

