
1

Giuseppe Bianchi

Software Defined Networking
& Network Function Virtualization:

evolution, opportunities, challenges
Giuseppe Bianchi

CNIT / University of Roma Tor Vergata

Credits to A. Capone for part of the slides

Beba
BEhavioural BAsed forwarding

Giuseppe Bianchi

What’s the problem?

Legacy network infrastructure is
too complex, too brittle, and too closed

Quote from Michael Beesley, Juniper Networks

Figure from David Meyer, Brocade

2

Giuseppe Bianchi

Information Technology has evolved!

èYesterday
ðRigid applications, manually administered
ðdedicated/physical storage and servers

èToday
ðSoftware-as-a-service
ðVirtualization
ðAutomated updates
ðFlexible workload management
ð…

Let’s take a similar evolution in networks
à SDN (2008+) and NFV (2012+)

Giuseppe Bianchi

Forwarding
HW

OS

Forwarding
HW

OS

What’s the problem with
‘Classical’ Networking

Distributed network functions

Forwarding
HW

OS

State distribution mechanism
(standard protocols)

Router/switch/appliance

Closed
platform!

Network-wide consistency for
any “change” or new functions

3

Giuseppe Bianchi

Vertically Integrated

Closed	
platform!
HW/SW	bundled

Very	few	
can	access	
code/details

Hard	to	
innovate!!

Protocols	guarantee	interoperability…
But	what’s	the	drawback?

Forwarding	HW

OS

AppApp App

L3	Routing,	L2	switching,	ACL,	VPNs,	etc…	

Control-plane

Data-plane

Giuseppe Bianchi

Innovation via standards…
Way too many standards?

Source:	IETF

4

Giuseppe Bianchi

Giuseppe Bianchi

Vendors dominated?

Source:	IETF

5

Giuseppe Bianchi

Standards: the aftermath
èIt may take years to standardize a new

feature

èAre standards always the best ideas???
ðOr are they perhaps also driven by non-scientific

considerations?

èCost and roll-out issues

èDelaying their adoption: gray periods
for security, reliability, performance

Giuseppe Bianchi

The management nightmare
èConfiguration interfaces vary across:

ðDifferent vendors
ðDifferent devices of same vendor
ðDifferent firmware versions of same device!
ð… and bugs as well!!

à20M lines of code in some routers

èSNMP fail
ðProliferation of non-standard MIBs
ðPartially implemented standard MIBs
ðIETF recently published a recommendation to stop

producing writable MIB modules

6

Giuseppe Bianchi

SDN to the rescue…
èUltimate goal: get rid of protocols!

ðScott Shenker’s 2011 talk’s title

èHow to: division of labor!
ðDumb data plane switches
ðStandard interface towards switches

àVendor agnostic!
ðComplex control tasks maintained outside the switch

àTopology control, network states, etc

Giuseppe Bianchi

The new paradigm

Data-plane

Control-plane

Data-plane

Control-plane

Data-plane

Control-plane

Switch

Data-plane

Data-plane

Data-plane

Control-plane
Programmable

switch

Traditional	networking Software-Defined	Networking

dumb,	fast

smart,	slow,	(logically)	centralized

API to the
data plane

(e.g., OpenFlow)

7

Giuseppe Bianchi

Software Defined Networking

Simple
forwarding HW

Simple
forwarding HW

Simple
forwarding HW

Simple
forwarding HW

AppAppApp

Data plane abstraction

Programming interface

N

S
W E

Network OS

CONTROLLER
Logically centralized Intelligence

Giuseppe Bianchi

SDN breakthrough: abstracting network view

Simple
forwarding HW

Simple
forwarding HW

Simple
forwarding HWSimple

forwarding HW

Network OS

HW open interface

Global Network View interface

Network Abstraction

Abstract Network View interface

App

App

App

HW forwarding abstraction
low-level primitives to
describe packet forwarding
Most notably, OpenFlow

Global Network view abstraction
Permits programmer to focus on
high level view of network state

Network OS:
Maps high level “commands” and programmer needs
into low level switch configuration

Net Apps / Services:
Solve Distributed Systems
problems ONCE rather than for
every protocol (e.g. Dijkstra)

8

Giuseppe Bianchi

Network Abstraction

SDN breakthrough: abstracting network view

Simple
forwarding HW

Simple
forwarding HW

Simple
forwarding HWSimple

forwarding HW

Network OS

HW open interface

Global Network View interface

Abstract Network View interface

App

App

App

Abstract network view:
Permits the programmer not to bother with complex
policy settings along network paths

Abstract
network view:
(e.g. big switch
abstraction)
Global
network view:

Source: Scott Shenker, Stanford

A

B

A

B

AàB drop

AàB drop
AàB drop

AàB
drop

Giuseppe Bianchi

Network Functions
Virtualization Independent

Software Vendors

BRAS

Firewall

DPI

CDN

Tester/QoE
monitor

WAN
Acceleration

Message
Router

Radio Network
Controller

Carrier
Grade NAT

Session Border
Controller

Classical Network Appliance
Approach

PE Router

SGSN/GGSN

Generic High Volume
Ethernet Switches

Generic High Volume Servers

Generic High Volume Storage

Orchestrated,
automatic
remote install

hypervisors

Adapted from Bob Briscoe, BT

9

Giuseppe Bianchi

The network meets the cloud
Provider A Provider B

Data
Center 1

Software
implemented
functionality

Low-cost
Switching/routing

Provider C

Data
Center 2

Provider A
Provider B

Provider C

Firewall DPI Account Storage VPN Streaming

Giuseppe Bianchi

The network meets the cloud

Shared infrastructure
with low-cost
switching/routing

Provider C

Data Center 2

Virtual Provider A
Virtual Provider B

Virtual Provider C

Provider A Provider B

Data
Center 1

Software
implemented
functionality

Firewall DPI Account Storage VPN Streaming

10

Giuseppe Bianchi

Complementary networking trends

Open
Innovation

Network
Functions

Virtualisation

Software
Defined
Networks

replaces physical network appliances with software virtual appliances running on
commodity IT servers

(strongly) reduces reduces space &
delivery time power consumption
Lifecycle management

Centralized intelligence

Leverage R&D
from Third parties

Competitive supply of
innovative applications

Network configuration
& deployment on

multi-vendor equipments

Abstractions (e.g., intent)
to simplify and automate

network control and
management

Giuseppe Bianchi

Complementary networking trends

Open
Innovation

Network
Functions

Virtualisation

Software
Defined
Networks

replaces physical network appliances with software virtual appliances running on
commodity IT servers

(strongly) reduces reduces space &
delivery time power consumption
Lifecycle management

Centralized intelligence

Leverage R&D
from Third parties

Competitive supply of
innovative applications

Network configuration
& deployment on

multi-vendor equipments

Abstractions (e.g., intent)
to simplify and automate

network control and
management

Modules, interfaces, third party SW
à Greater innovation rate

Automation, orchestration à Reduced OPEX

virtualization à Reduced CAPEX

11

Giuseppe Bianchi

SDN/NFV: Why should carriers care?
èAgility

ðBusiness cycles shrink! Must move quickly, change offerings, promptly
add new services when your customers face a need

ðFace fierce OTT competition (and their direct offers to end customers -
bypassing carriers) with their own “weapons”
àcurrent hot battlefield: M2M/IoT/MTC

èBetter insight and visibility into the network status
ðThanks to open standards & software-based solutions

èBetter support, consistency, troubleshooting
ðHard to replace iron appliances à compare with effortless upgrade of

software-based virtual appliances
ðSame/consistent versions in different customers’ locations with just a

“click”
ðSecurity advantages à isolation, easier policy mgmt, security

appliances, etc

Giuseppe Bianchi

Technical Challenges (a few)
è Beyond Virtual Machines

à Containers à Unikernels
àLower footprint
à isolation
àmulti-tenancy
à (much!) faster o(10ms)

migration/boot
à…

Top Figure taken from Ericsson, bottom figure taken from McKeown (Stanford)

èHigh Performance via
HW (dataplane)
programmability
P4 switches, EU projects
BEBA/SuperFluidity,
programmable state machines
in OpenFlow 1.6 (?)

12

Giuseppe Bianchi

Awareness Challenges

Source: Juniper

èWe all agree on infrastructure advantages
ðElastic scaling, just-in-time deployment, agile provisioning, automated

network resilience, application-centric network services, …
èBut (still) limited awareness on application-level use

cases and benefits - That’s also why we need to talk
also outside the today’s circle!
ðNote: reported benefits exceed expectation according to survey below

Giuseppe Bianchi

Getting (a bit more) technical:
a brief intro to SDN and

OpenFlow

13

Giuseppe Bianchi

… before OpenFlow…
Network programmability is not nearly new!!
Neither Control/data plane separation is new!!
Active Networks, IETF ForCES, wireless APs, …

Giuseppe Bianchi

Active networking
(mid 90ies)

è“The goal for active networking is to have
programmable open nodes, with the ability
to deploy programs dynamically into node
engines.”

Capsule	model
D.	Wetherall et	al.,	“ANTS:	A	toolkit for	building	and	dynamically
deploying network	protocols.	In	IEEE	OpenArch,	April	1998.

active
 node

 IP
router

app

channel

app

app

app

active
 node

active
 node

channel

ch
an
ne
l

capsule

capsule

channel

capsule

active
 node

ca
ps
ul
e

Figure 1. Entities in an ANTS active network

ANTS toolkit builds on the safety properties of Java byte-
codes.

A final strategy that does not fit into these three styles is
worth noting. Active services [2] seek to gain the advantages
of active networks without disturbing the network layer by
relying on domain-specific proxies to support “value-added”
network services such as transcoding. We consider domain-
specific solutions to be a useful tool, but the use of prox-
ies to be largely orthogonal to many active network design
problems. Clearly, proxies are valuable for incremental de-
ployment. (They are not the only option though. We prefer
firewall-style interception at selected routers because of the
late-binding that it provides, and the potential for access to
routing and load information that it retains.) However, the
use of proxies rather than extensible routers does not resolve
design issues such as the extension API, code distribution
and global resource management, all of which must be tack-
led in any real system.

3 The essentials of ANTS

In this section, we summarize the details of ANTS that are
needed to understand the subsequent discussion. We focus
on “bootstrapping the reader” by explaining how it works;
we defer arguments about why it works in this manner to
the following sections. The summary is based on the refer-
ence version of ANTS detailed in a dissertation [45], which
supersedes an earlier exposition [46].

We describe ANTS along two lines: the interface it
presents to users at the edge of the network, and its im-
plementation within the network. In addition, we comment
on the ANTS toolkit, a reference implementation written in
Java, and how ANTS may be deployed incrementally in the
Internet.

3.1 Interface
The entities in an ANTS network are shown in Figure 1. Ap-
plications obtain customized network services by sending
and receiving special types of packets called capsules via
a programmable router referred to as an active node. Each

active node is connected to its neighbors, some of which can
be conventional IP routers, by link layer channels. The in-
novative properties of an ANTS network stem from the in-
teraction of capsules and active nodes; the application and
channel components are simply modeled on those of con-
ventional networks.

The format of a capsule, shown in Figure 2, is an ex-
tension of the IP packet format. Capsules are like mobile
agents in that they direct themselves through the network by
using a custom forwarding routine. The type of forwarding
is indicated by the value of the type field and is selected by
end-user software when it injects a capsule into the network.
The corresponding forwarding routine is transferred using
mobile code techniques to active nodes that the capsule vis-
its as it passes through the network. The routine is executed
at each active node that is encountered along the forwarding
path. At conventional nodes, IP forwarding occurs using the
IP header fields.

Any party can develop a new network service and make
it available for widespread use. The first step is to write a
new set of forwarding routines that implement the desired
behavior. This is done in a subset of Java in our reference
implementation, the ANTS toolkit. Each different forward-
ing routine corresponds to a different type of capsule and
can carry different header fields (the type-dependent header
fields in Figure 2). The kinds of forwarding routines that
can be constructed depend on the capabilities of the active
node; routines are further restricted in the amounts of node
resources they can consume. The ANTS toolkit provides
a core API, listed in Table 1, that grew out of experience
with a predecessor system [47] and consists of the small-
est set of operations with which we were able to develop
many different services. It provides three categories of calls
that: query the node environment; manipulate a soft-store of
service-defined objects that are cached for a short time and
then expired; and route capsules towards other nodes or ap-
plications in terms of shortest paths. These calls allow novel
routing services to be expressed by querying network char-
acteristics, maintaining route information in the soft-store,
and following it during forwarding. Additional API calls
will likely be added with further development and experi-
ence. Loss information, for example, is clearly useful for
congestion-related services, yet absent from the list because
it is inconvenient in our current user-level Java implementa-
tion.

Once the code is written, it is signed by a trusted author-
ity (an IETF-equivalent) to certify that the service makes use
of overall network resources in a “reasonable” fashion. Cer-
tification reflects global resource management concerns that
we have not otherwise resolved in the general case. This
issue is discussed in Section 5. Finally, the code is regis-
tered with a directory service using a human-readable name
(such as “Drop Priority”) to make it available to other net-
work users.

End-user software can use a new service developed ac-
cording to this model in a simple manner. First, the service
code is obtained via the directory service, which is simply
the local filesystem in our prototype. In a large-scale net-
work, this step can be made automatic (without burdening
applications) with a process analogous to DNS host resolu-

66

Programmable router	model
J.M.	Smith	et	al.,	"Activating networks:	a	progress	report,"	
Computer,	vol.32,	no.4,	pp.32,41,	Apr 1999

Obtaining services
As the figure shows, a network user (application)

gets a service by interacting with an EE, an instance of
which is running in each shared node as well as in the
communicating end systems. The EE is responsible for
all aspects of the user-to-network interface, including
the syntax and semantics of the packets the user sub-
mits, the nature of the programming model and the
abstractions supported, and addressing and naming
facilities. Each EE exports some API to the user—for
example, an extended Java Virtual Machine, an
enhanced sockets interface, or a secured module-load-
ing interface for adding extensions.

Because multiple EEs may run on a single active
node, as in Figure 1, the node’s operating system
(NodeOS) must manage available resources and con-
trol resource contention. To ensure this control, all
EEs access node resources only through the NodeOS,
which mediates all access to node resources, includ-
ing transmission, storage, and computational band-
width. The NodeOS also implements a security policy
database and an enforcement engine, which carries
out node policies that govern resource use. Finally, the
NodeOS may also support generic abstractions that
could be useful to all EEs, such as forwarding tables.

Thus, the end user’s packets see the services built
up in three layers. At the bottom level, the NodeOS’s
API—which is consistent throughout the active net-
work—defines the basic building blocks available to
EEs. An individual EE implements a set of abstrac-
tions using these building blocks and presents them
to the end user. To obtain a desired service, the end
user manipulates these abstractions according to the
API the EE defines.

The basic operation model is the same for all active
nodes: Packets arrive on some physical link, and the

NodeOS immediately classifies them according to
their headers and places them in the appropriate log-
ical channels. Each channel has some associated pro-
tocol processing, which may include security checks.
A channel delivers a packet either to an EE for inter-
pretation and processing or to an output physical link.

EEs may also originate packets and place them in
output channels, which provide processing and, ulti-
mately, transmission, on a physical link. Unlike tra-
ditional networks, however, in which a single packet
traverses network nodes, the relationship between
incoming and outgoing packets at an active node is
arbitrary—giving designers a new degree of freedom.
This means that the EEs must implement any global
mechanisms to enhance or maintain network stability;
the NodeOS can only ensure that instability in one EE
does not affect the resources available to others. Many
EEs have implemented mechanisms to ensure the sta-
bility of the services they provide.

To simplify porting EEs to multiple underlying
operating systems, the proposed active network archi-
tecture specifies an EE-to-NodeOS interface, or
NodeOS interface.

Design objectives
The architecture meets five main objectives:

• Minimize the standardized protocols required to
develop and implement end-to-end services. By
reducing the amount of global agreement needed,
this objective serves both research and commercial
interests. Designers can experiment with a “live”
network because the network is flexible enough to
accommodate their needs during its operation. On
the standard foundation, a variety of communica-
tion services can be established within each EE.

April 1999 33

Execution
environment A

Execution
environment B

Execution
environment A

Application 1 Application 2 Application 3 Application 1

Execution
environment B

Application 4

Application 3

Node operating system

Transmission
facilit ies

Node operating system

Figure 1. A proposed
general architecture
for active networking.
At each network
node, execution envi-
ronments (EEs) act as
programming mecha-
nisms and can be tai-
lored to a particular
application or set of
applications. The EEs
could be any of the
environments
currently offered:
Alien, ANTS, Switch-
ware, and so on. The
node operating sys-
tem (Nemesis, Scout,
Linux, or NT, for
example) enforces
resource sharing and
eliminates the need
to repeat core
services.

.

14

Giuseppe Bianchi

ForCES Architecture

è IETF ForCES Working Group - Forwarding and
Control Element Separation
ðestablished in 2001
ð closed in 2014

èRFC3746: “ForCES Framework” defines
ð CE：Control Element
ð FE：Forwarding Element

àCE may be required to control hundreds of FEs

ForCES NE

CE1 CE2

FE2 FE1

Fp

Fif

Fr
CE Manager

FE Manager

Fif

Giuseppe Bianchi

ForCES Architecture - FE

ð ForCES Protocol
àProvide a universal standardized control interface for FEs

ð LFB – Logical Functional Block
àe.g., Classifier LFB, IPv4 LPF LFB, IPv6 LPF LFB, Scheduler LFB

ð Datapath
àCan dynamically configure LFB graph to support various over-IP

services

Forwarding	Element	Model

LFB1

ForCES	Protocol	Stack

Attributes

LFBn

Attributes
...

Datapath

FE

CE
ForCES Protocol

15

Giuseppe Bianchi

Control/data plane separation
since at least 2002-03 in wireless LANs!!

Controller
CapWAP;

Many
proprietary

«thin»	
Access	
Points

Virtually ALL today’s enterprise-level WiFi rely on controllers
since more than 10 years (well before OpenFlow)

Giuseppe Bianchi

… and then came Openflow
Before OpenFlow, the ideas underlying SDN faced a tension between the
vision of fully programmable networks and pragmatism that would
enable real-world deployment. OpenFlow struck a balance between these
two goals by enabling more functions than earlier route controllers and
building on existing switch hardware, through the increasing use of
merchant-silicon chipsets in commodity switches
[Feamster, Rexford, Zegura, 2014]

16

Giuseppe Bianchi

OpenFlow
èStanford, 2008
èClean Slate research program
è“With what we know today, if we were

to start again with a clean slate, how
would we design a global
communications infrastructure?”

Is	it	really	a	clean	
slate	approach?

Giuseppe Bianchi

OpenFlow: a compromise
[original quotes: from OF 2008 paper]

èBest approach: “persuade	commercial	name-brand	
equipment	vendors	to	provide	an	open,	programmable,	
virtualized	platform	on	their	switches	and	routers”
ðPlainly	speaking:	open	the	box!!	No	way…

èViable approach: “compromise	on	generality	and	seek	a	
degree	of	switch	flexibility	that	is
ðHigh	performance	and	low	cost
ðCapable	of	supporting	a	broad	range	of	research
ðConsistent with vendors’ need for closed

platforms.

17

Giuseppe Bianchi

OpenFlow’s key insight
èSeveral different network devices

implement somewhat similar flow tables
for a broad range of networking
functionalities

àL2/L3 forwarding
àFirewall
àNAT
à…

èFlow tables usually implemented in
commodity HW (TCAMs - more later)

èOpenFlow’s key insight: abstract such flow
table!
ðVery, VERY simple – compare to ForCES J
ðBut enough do to something non-trivial

Giuseppe Bianchi

OpenFlow match/action
abstraction

34G. Bianchi & A. Capone: SDN tutorial

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Matching
Rule Action

1. FORWARD TO PORT
2. ENCAPSULATE&FORWARD
3. DROP
4. …
Extensible

Vendor-implementedProgrammable logic

Pre-implemented matching engine

18

Giuseppe Bianchi

OpenFlow	Protocol	

OpenFlow controller

In-bound	or	out-bound

OpenFlow Controller
èInjects/updates entries in the switch

ðOpenFlow abstraction: pragmatic, platform agnostic
àSame for HW or SW switches, same for multiple vendors

ðOpenFlow protocol: messages over TLS/TCP
àController à switch: flow mod rules
àSwitch à Controller: statistics, events, exceptions, …

Giuseppe Bianchi

Example

Readily implemented in legacy TCAM
Ternary Content Addressable Memory

Description Port MAC	src MAC
dst

Eth	
type

VLAN	
ID

IP	Src IP	Dest TCP	
sport

TCP	
dport

Action

L2 switching * * 00:1f:.. * * * * * * Port6

L3	routing * * * * * * 5.6.*.* * * Port6

Micro-flow	
handling

3 00:20.. 00:1f.. 0x800 Vlan1 1.2.3.4 5.6.7.8 4 17264 Port4

Firewall * * * * * * * * 22 Drop

VLAN	
switching

* * 00:1f.. * Vlan1 * * * * Port6,
port7,	
port8

19

Giuseppe Bianchi

Forwarding Abstraction OF1.0

SMT	- Single	Match	Table

TCAM
Ternary	Content	Addressable	Memory

Giuseppe Bianchi

OpenFlow architecture

20

Giuseppe Bianchi

Flow table

Match Actions Counters

1. Forward	(one	or	more	ports)
2. Drop
3. Encapsulate	and	send	to	controller
4. Header	rewrite
5. Push/pop	MPLS	label	/	VLAN	tag
6. Queues	+	bitrate	limiter	(bit/s)
7. Etc..

Bytes	+	packets

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

L4
sport

L4
dport

VLAN
pcp

IP
ToS

Slide	courtesy:	Rob	Sherwood

Giuseppe Bianchi

How to populate flow states?
Reactive vs Proactive

èReactive
ðStart with flow table empty
ðFirst packet of a flow sent to controller
ðController install flow entries
ðGood for stateful forwarding:

àL2 switching, dynamic firewall, resource
management

èProactive
ðFlow entries installed at switch boot
ðGood for static forwarding:

àL3 routing, static firewall, etc..
ðGood only if you know all in advance…

21

Giuseppe Bianchi

How to populate flow states?

Packet F1

Controller

No match

Giuseppe Bianchi

How to populate flow states?

Controller

Take «smart»
decision

Encapsulate &
forward

22

Giuseppe Bianchi

How to populate flow states?

Controller

Packet F1

Giuseppe Bianchi

Centralization: not a panacea!
èCentral view of the network

àNetwork as a “whole”
àNetwork states
àMulti-node coordination

èSignalling & latency!
ðO(100 ms)

à100ms = 20M packets lost @ 100 gbps

Great idea for network-
wide states and «big
picture» decisions

Poor idea for local
states/decision, (way!)
better handled locally

(less delay, less load)

proactive flow states - pre-populate flow tables: solves only very specific cases, when you know…

23

Giuseppe Bianchi

Distributed controllers
the «common» way to address such cons

A non-solution!
still slow path latency!!

Proprietary controller extensions?
Back to Babel?

«true» fast path solution: update
forwarding rules in 1 packet
time – 5 ns @ 64B x 100 Gbps

3 ns = 60cm signal propagation…

Giuseppe Bianchi

Switches cannot remain dumb:
Starting the process of data

plane evolution

24

Giuseppe Bianchi

Models can be perfect and clean,
reality is dirty!

èMatch/action model: in principle very nice and
flexible for doing… whatever… in practice
ðNeed to match over many more fields

àOpenFlow initially standardized basic ones (Ethernet, IPv4,
MPLS, VLAN tag, etc.); plenty of extensions needed

àAnd what about “custom” fields?
ðActions are limited to a rather small set

àMore header manipulation
àMore tunneling
àWhat about Forging packets? (e.g. ARP reply)

ðMatch/action is a static rule
àdynamic behavior requires controller
àLatency may kill – e.g. fast reroute upon failure

Giuseppe Bianchi

And hardware limitations as well…

èTCAMs: expensive, used by manufacturers only
when strictly necessary
ðHash tables (e.g. cuckoo) are a much better implementation choice
ðbut no easy wildcard matching, predefined search keys

èSpecialized ASICs are typically complex with a
number of hard limitations on table types, sizes,
and match depth
ðTable types: gives away the beauty of the original “vendor neutral”

abstraction
ðBrittle implementations – you need to know what’s the device you

control – back to the problem we wanted to address!!

25

Giuseppe Bianchi

Openflow (not so clean?)

evolution
In the beginning was simplicity. [Richard Dawkins]

Giuseppe Bianchi

Single Matching Table limitations

èSMT: simple, powerful, elegant
abstraction…

è…but
ðSingle, huge, TCAM: not practical

àWide: all header fields
àBig: all possible combinations of values relevant

ðPacket processing in the real world may require
multiple steps/stages
àIngress/egress processing, ACL filtering,

sequential L2/L3 matching, etc

26

Giuseppe Bianchi

Multiple Match Tables (MMT)
èSingle Match tables are costly: all

possible combinations of header values
in a single long table

èSolution: Multiple Match Tables (MMT)
èMMTs are the HAL of OF 1.1

OpenFlow Switch Specification Version 1.1.0 Implemented

Table
0

Table
1

Table
n

Packet Execute
Action

Set

Packet
In

Action
SetAction

Set = {}

OpenFlow Switch

Packet
Out...

Ingress
port

Packet +
ingress port +

metadata

Action
Set

(a) Packets are matched against multiple tables in the pipeline

Match fields:
Ingress port +
metadata +

pkt hdrs

Action set

Flow
Table

➀ Find highest-priority matching flow entry

➁ Apply instructions:
 i. Modify packet & update match fields
 (apply actions instruction)
 ii. Update action set (clear actions and/or
 write actions instructions)
 iii. Update metadata

➂ Send match data and action set to
 next table

➀

➁

➂
Action set

Match fields:
Ingress port +
metadata +

pkt hdrs

(b) Per-table packet processing

Figure 2: Packet flow through the processing pipeline

The flow tables of an OpenFlow switch are sequentially numbered, starting at 0. Pipeline processing
always starts at the first flow table: the packet is first matched against entries of flow table 0. Other flow
tables may be used depending on the outcome of the match in the first table.

If the packet matches a flow entry in a flow table, the corresponding instruction set is executed (see
4.4). The instructions in the flow entry may explicitly direct the packet to another flow table (using the
Goto Instruction, see 4.6), where the same process is repeated again. A flow entry can only direct a packet
to a flow table number which is greater than its own flow table number, in other words pipeline processing
can only go forward and not backward. Obviously, the flow entries of the last table of the pipeline can
not include the Goto instruction. If the matching flow entry does not direct packets to another flow table,
pipeline processing stops at this table. When pipeline processing stops, the packet is processed with its
associated action set and usually forwarded (see 4.7).

If the packet does not match a flow entry in a flow table, this is a table miss. The behavior on ta-
ble miss depends on the table configuration; the default is to send packets to the controller over the control
channel via a packet-in message (see 5.1.2), another options is to drop the packet. A table can also specify
that on a table miss the packet processing should continue; in this case the packet is processed by the next
sequentially numbered table.

6Giuseppe Bianchi

MMT and implementations
èMMT introduced in OF 1.1 are

actually much closer to real switch
implementation in specialized chips

source:	bigswitch.com

27

Giuseppe Bianchi

Switch pipeline
èExisting switch chips implement a small (4–8)

number of tables whose widths, depths, and
execution order are set when the chip is fabricated

èOptimization of the pipeline can lead to very
different results depending on the context:
ðA chip used for a core router may require a very large 32-bit IP longest

matching table and a small 128 bit ACL match table;
ðA chip used for an L2 bridge may wish to have a 48-bit destination MAC

address match table and a second 48-bit source MAC address learning
table;

ðan enterprise router may wish to have a smaller 32-bit IP prefix table
and a much larger ACL table as well as some MAC address match
tables.

[RMT]	Pat Bosshart et	al,	“Forwarding Metamorphosis:	Fast	Programmable Match-Action	Processing	in	Hardware	for	SDN”,	ACM	SIGCOM	2013.

Giuseppe Bianchi

Group Tables (OF 1.1)

èPackets of the same flow are applied the same
actions unless the table entry is modified by the
controller

èNot good for some common and important cases
(e.g. multicast, multipath load balancing, failure
reaction, etc.)

èSolution: Group tables
ðGoto table “group table n”
ðList of buckets of actions
ðAll or some of the buckets are executed depending on the type

èTypes of Group tables
ðAll (multicast)
ðSelect (multipath)
ðFast-failover (protection switching)

28

Giuseppe Bianchi

Group Tables (OF 1.1)
èFast failover
èNote that this is the first “stateful” behavior

in the data plane introduced in OF !!!

Port	A
Status	

monitoring

Port	B
Status	

monitoring

Port	C
Status	

monitoring

Port	D
Status	

monitoring

Group	table	
fast	failover

Action	bucket	1:
FWD	Port	A,	…

Action	bucket	2:
FWD	Port	B,	…

Action	bucket	3:
FWD	Port	C,	…

Action	bucket	4:
FWD	Port	D,	…

A
B

CD

Giuseppe Bianchi

OF 1.2
èExtensible match (Type Length

Value)
èSupport for IPv6, new match fields:

ðsource address, destination address, protocol
number, traffic class, ICMPv6 type, ICMPv6
code, IPv6 neighbor discovery header fields, and
IPv6 flow labels

èExperimenter extensions
èFull VLAN and MPLS support
èMultiple controllers

29

Giuseppe Bianchi

OF 1.3
èInitial traffic shaping and QoS support

ðMeters: tables (accessed as usual with “goto table”)
for collecting statistics on traffic flows and applying
rate-limiters

Meter	Table

Meter	identifier Meter	band Counters

… … …

… … …

… … …

Type Rate Counters Type/argument

Giuseppe Bianchi

OF 1.4
èMore extensible wire protocol
èSynchronized tables

ðtables with synchronized flow entries
èBundles

ðsimilar to transactional updates in DB
èSupport for optical ports

30

Giuseppe Bianchi

OF 1.5
Egress tables

Giuseppe Bianchi

OF 1.5
èPacket type aware pipeline
èExtensible flow entry statistics
èTCP flags matching

G. Bianchi & A. Capone: SDN tutorial 60

31

Giuseppe Bianchi

OF future extensions

èThe discussion on flow states
ðThe capability to store / access flow metadata that persists for

lifetime of flow (not just current packet)
ðPotential to enable a variety of new capabilities:

àFragment handling without reassembly
àRelation between bidirectional flows (e.g., RDI)
àAutonomous flow learning + flow state tracking
àMAC learning
àTCP proxy

ðHierarchies of flows
àe.g. FTP control / data, all belonging to a user, etc.

èNothing done until OF1.5

[MAC13]	Ben	Mack-Crane,	“OpenFlow Extensions”,	US	Ignite	ONF	GENI	workshop,	Oct	2013	

But stay tuned until tomorrow – good chance we’ll have a surprise soon J

Giuseppe Bianchi

Also abstraction “involutions” (?):
Typed tables

è“A step back to ensure wider applicability”
èA third way between reactive and proactive
èPre-run-time description of switch-level

“behavioral abstraction” (tell to the switch
which types of flowmods will be instantiated at
run time)

èLimit types supported according to HW type

ONF	Forwarding	Abstractions	WG

OpenFlow
1.0	

Typed	tables	patterns:	Forwarding	Elements	(F:E.)

Constrained	
OpenFlow 1.1	

Layer	3	
IPv4	

Stateless	
Generic	
Tunnel	

Stateful	
Generic	
Tunnel	

802.1D	
Forwarding	 (…)

32

Giuseppe Bianchi

OpenFlow evolutions: take home
èPipelined tables from v1.1

ðOvercomes TCAM size
limitation

ðMultiple matches natural
àIngress/egress, ACL, sequential L2/L3 match, etc.

èExtension of matching capapilities
ðMore header fields
ðPOF (Huawei, 2013): complete matching flexibility!

èOpenflow «patches» for (very!) specific processing
needs and states
ðGroup tables, meters, synchronized tables, bundles, typed tables

(sic!), etc
ðNot nearly clean, hardly a «first principle» design strategy
ðA sign of OpenFlow structural limitations?

Giuseppe Bianchi

Can we provide better data
plane programming
abstractions?

Yes! Tomorrow’s talk:
towards stateful dataplane

