niversita di Ro
—
—
oooooooooooooooo —
(:]nl lLl =
perletel nnnnnnnnnnnnnn —
e

Software Defined Networking
& Network Function Virtualization:

evolution, opportunities, challenges

Giuseppe Bianchi

> _ % " . c " L .
SUPER#L/U\D\TV BebO

Giuseppe Bianchi

What’s the problem?

Legacy network infrastructure is
too complex, too brittle, and too closed

N %*
o
R| Domain of the Robust x& X o

Pumax

Increasing number of policies, protocols, configurations and interactions (well, and code)
—_—

Quote from Michael Beesley, Juniper Networks

Giuseppe Bianchi

Figure from David Meyer, Brocade

Information Technology has evolved!

> Yesterday

=Rigid applications, manually administered

=dedicated/physical storage and servers
= Today

= Software-as-a-service

= Virtualization

= Automated updates

= Flexible workload management

= ...

Let’s take a similar evolution in networks
—> SDN (2008+) and NFV (2012+)

——— Giuseppe Bianchi

What’s the problem with
‘Classical’ Networking

Distributed network functions

Network-wide consistency for
any “change” or new functions

. State distribution mechanism
.. (standard protocols)

- Forwarding
o i
HW

platform! _

Router/switch/appliance
Giuseppe Bianchi

Vertically Integrated

/ L3 Routing, L2 switching, ACL, VPNs, etc\ ClOSEd

TN platform!

\) Very few

Control-plane —= —

can access
- code/details
Data-plane orward
_ ‘LM/ Hard to

innovate!!

Protocols guarantee interoperability...
But what’s the drawback?

HW/SW bundled

——— Giuseppe Bianchi

Innovation via standards...
Way too many standards?

Publication rate per year

RLUUN o e s S s s B B e B e e B e B B e B B B

450 b . SO BOSO .

400

300 -

250

Number of RFCs

200 B

150 - 1 .

100 —

50 b . . B -

sasaa

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Year

Source: IETF

——— Giuseppe Bianchi




HOW_ STANDARDS PROLFERATE:
(468 A/C (HARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

SITUATION:

THERE ARE
|4 COMPETING
STANDPRDS.

M?! RIDICULOLS!

WE NEED To DEVELGP

ONE UNERSAL STANDARD _

THAT COVERS EVERYoNgs | | O/TUATION:
VSE OASES.  enyy THERE. ARE

\O ) ' [S COI IPETING
STANDPRDS.

——— Giuseppe Bianchi

Number of Authors

Vendors dominated?

Number of Authors per Company

400IIllllllllllIIllllIIIIIIIIIIIIIIIIIIIII

350

300

250

200

150

100

50

——— Giuseppe Bianchi

Source: IETF




Standards: the aftermath

= It may take years to standardize a new
feature

=>Are standards always the best ideas???

=0r are they perhaps also driven by non-scientific
considerations?

= Cost and roll-out issues

=>Delaying their adoption: gray periods
for security, reliability, performance

——— Giuseppe Bianchi

The management nightmare

=»Configuration interfaces vary across:
= Different vendors
= Different devices of same vendor
= Different firmware versions of same device!

= ... and bugs as well!!
—>20M lines of code in some routers

= SNMP fail
= Proliferation of non-standard MIBs
= Partially implemented standard MIBs

=|ETF recently published a recommendation to stop
producing writable MIB modules

Giuseppe Bianchi




SDN to the rescue...

= Ultimate goal: get rid of protocols!
= Scott Shenker’'s 2011 talk’s title

= How to: division of labor!
=Dumb data plane switches

= Standard interface towards switches
->Vendor agnostic!

=Complex control tasks maintained outside the switch
—>Topology control, network states, etc

——— Giuseppe Bianchi

The new paradigm

Traditional networking Software-Defined Networking
smart, slow, (logically) centralized

Switch Programmable
l switch

data plane

(e.g., OpenFlow dumb, fast

Giuseppe Bianchi




Software Defined Networking

Programming interface

CONTROLLER
Logically centralized Intelligence

Network OS

Simple
forwarding HW

Simple

forwarding HW

Simple
forwarding HW

Simple
forwarding HW

——— Giuseppe Bianchi

SDN breakthrough: abstracting network view

Net Apps / Services:
Solve Distributed Systems
problems ONCE rather than for i_nt‘el‘fgc_e. _
every protocol (e.g. Dijkstra)

Global Network view abstraction
Permits programmer to focus on
high level view of network state Global Network View i e

Network OS:

Maps high level “commands” and programmer needs
into low level switch configuration

B e el e e e e e T R R T L

HW open interface
HW forwarding abstraction
low-level primitives to
describe packet forwarding
Most notably, OpenFlow

Simple
forwarding HW

Simple
forwarding HW

Simple
forwarding HW

Simple
torwarding HW

——— Giuseppe Bianchi




SDN breakthrough: abstracting network view

Abstract Network View interface

Abstract network view:
F Permits the programmer not to bother with complex

Abstract

network view: -

(e.g. big switch A>B
abstraction) drop
Global

network view:

Simple
forwarding HW

Source: Scott Shenker, Stanford

——— Giuseppe Bianchi

Network Functions
Virtualization Independent

Software Vendors )

ll

Message
Router

[ virtwal | [ vietwal | b Sirtual | [ yirtual |
oace
-

: , @':e\ L :
Session Borderq Wﬁ il M

Controller  WAN — S|

Acceleration
Orchestrated,
automatic

Iﬁ i - remote install

‘l‘ /i

i H ——
Tester/QoE

monitor

Ug : hypervisors

Generic High Volume Servers

Generic High Volume Storage
I Radio Network
PE Router Controller

Classical Network Appliance Generic High Volume
Approach Ethernet Switches

——— Giuseppe Bianchi

Adapted from Bob Briscoe, BT




The network meets the cloud

Software  Provider A Provider B Provider C

implemented
functionality

Data
Center 2 Provider C

Data
Center 1

Low-cost
Switching/routing

Provider B

Provider A

z@a Firewall DPI @ Account Storage @ VPN @J Streaming
oo & A

——— Giuseppe Bianchi

The network meets the cloud

Provider A Provider B Provider C

Software
implemented
functionality

Data
Center 1

Shared infrastructure
with low-cost
switching/routing

Firewall DPI @ Account Storage @ VPN @1 Streaming
[ e iy

Giuseppe Bianchi

Virtual Provider A




Complementary networking trends

replaces physical network appliances with software virtual appliances running on
commodity IT servers

(strongly) reduces reduces space &
delivery time Network power consumption
Lifecycle management Functions
Virtualisation

Abstractions (e.g., intent)
to simplify and automate
network control and
Open management
Innovation

Network configuration
y & deployment on
" multi-vendor equipments

Leverage R&D
from Third parties

Competitive supply of

innovative applications Centralized intelligence

——— Giuseppe Bianchi

Complementary networking trends

repla

Virtualisation

——— Giuseppe Bianchi

10



SDN/NFV: Why should carriers care?

=> Agility
= Business cycles shrink! Must move quickly, change offerings, promptly
add new services when your customers face a need

= Face fierce OTT competition (and their direct offers to end customers -
bypassing carriers) with their own “weapons”
- current hot battlefield: M2M/IoT/MTC

=> Better insight and visibility into the network status
= Thanks to open standards & software-based solutions

=> Better support, consistency, troubleshooting

= Hard to replace iron appliances - compare with effortless upgrade of
software-based virtual appliances

= Same/consistent versions in different customers’ locations with just a
“click”

= Security advantages > isolation, easier policy mgmt, security
appliances, etc

——— Giuseppe Bianchi

Technical Challenges (a few)

= Beyond Virtual Machines ¥
-> Containers = Unikernels :
-> Lower footprint
- isolation

app [l App [ App
-> multi-tenancy : o]
- (much!) faster o(10ms)
migration/boot
>...
Virtual Machines Containers Containers in VMs Unikernels

(for tenant isolation)

= High Performance via
HW (dataplane)
programmability 3.2Tb/s
P4 switches, EU projects L
BEBA/SuperFluidity, T [sox
programmable state machines
in OpenFlow 1.6 (?)

Packet Forwarding Speeds

Giuseppe Bianchi. — = =
Top Figure taken from Ericsson, bottom figure taken from McKeown (Stanford)

11



Awareness Challenges

= We all agree on infrastructure advantages

= Elastic scaling, just-in-time deployment, agile provisioning, automated
network resilience, application-centric network services, ...

=> But (still) limited awareness on application-level use
cases and benefits - That’s also why we need to talk
also outside the today’s circle!

= Note: reported benefits exceed expectation according to survey below

Expected vs. Reported Benefits of SDN Adoption

Source: Juniper

‘4

7% 36%
Mighest difference 2%
n expected vs. realized R 26%
benedits
239%
I I )
Cloud Virtual Data Sec ty Network Warkflow >D-WAN Microsegmantation
nterconnect enter Automation Visability Automation ar Contamerization

Getting (a bit more) technical:
a brief intro to SDN and
OpenFlow

Giuseppe Bianchi

12



... before OpenFlow...

Network programmability is not nearly new!!
Neither Control/data plane separation is new!!
Active Networks, IETF ForCES, wireless APs, ...

——— Giuseppe Bianchi

Active networking
(mid 90ies)

=>“The goal for active networking is to have
programmable open nodes, with the ability
to deploy programs dynamically into node
engines.”

Application 4

[Application 1][Application 2]  [Application 3] ~ [Application 1] [Application 3]

Execution
A

N F N7

‘ Node operating system ‘ ‘ Node operating system ‘
3 </

Execution Execution Execution
B A B

Transmission
facilities

Capsule model Programmable router model
D. Wetherall et al., “ANTS: A toolkit for building and dynamically J.M. Smith et al., "Activating networks: a progress report,"
deploying network protocols. In IEEE OpenArch, April 1998. Computer, vol.32, no.4, pp.32,41, Apr 1999

Giuseppe Bianchi

13



ForCES Architecture

ForCES NE

Fif Fif
= IETF ForCES Working Group - Forwarding and
Control Element Separation

= established in 2001
= closed in 2014
= RFC3746: “ForCES Framework” defines
= CE : Control Element
= FE : Forwarding Element
- CE may be required to control hundreds of FEs

——— Giuseppe Bianchi

ForCES Architecture - FE

Forwarding Element Model CE

ForCES Protocol

= ForCES Protocol

- Provide a universal standardized control interface for FEs
= LFB - Logical Functional Block

-e.g., Classifier LFB, IPv4 LPF LFB, IPv6 LPF LFB, Scheduler LFB
= Datapath

—>Can dynamically configure LFB graph to support various over-1P
services

——— Giuseppe Bianchi

14



Control/data plane separation
since at least 2002-03 in wireless LANs!!

Controller
CapWAP; «thin»
Many Access
proprietary Points

Virtually ALL today’s enterprise-level WiFi rely on controllers
since more than 10 years (well before OpenFlow)

——— Giuseppe Bianchi

... and then came Openflow

Before OpenFlow, the ideas underlying SDN faced a tension between the
vision of fully programmable networks and pragmatism that would
enable real-world deployment. OpenFlow struck a balance between these
two goals by enabling more functions than earlier route controllers and
building on existing switch hardware, through the increasing use of
merchant-silicon chipsets in commodity switches

[Feamster, Rexford, Zegura, 2014]

Giuseppe Bianchi

15



OpenFlow

= Stanford, 2008
=>Clean Slate research program

=2 “With what we know today, if we were
to start again with a clean slate, how
would we design a global
communications infrastructure?”

Is it really a clean
slate approach?

——— Giuseppe Bianchi

OpenFlow: a compromise
[original quotes: from OF 2008 paper]

=>» Best approach: “persuade commercial name-brand
equipment vendors to provide an open, programmable,
virtualized platform on their switches and routers”

= Plainly speaking: open the box!! No way...

=> Viable approach: “compromise on generality and seek a
degree of switch flexibility that is

= High performance and low cost
= Capable of supporting a broad range of research

= Consistent with vendors’ need for closed
platforms.

Giuseppe Bianchi

16



OpenFlow’s key insight

=>Several different network devices
implement somewhat similar flow tables

for a broad range of networking
functionalities
—2>L2/L3 forwarding
—>Firewall
>NAT
2.
= Flow tables usually implemented in
commodity HW (TCAMs - more later)
=>OpenFlow’s key insight: abstract such flow
table!
=Very, VERY simple — compare to ForCES ©

= But enough do to something non-trivial

——— Giuseppe Bianchi

OpenFlow match/action
abstraction

Programmable logic Vendor-implemm

Matching .
N Rule )\ Action
[ ——

: 1. FOR T
: 2. ENCAPSULATE&FORWARD
: 3. DROP

14,

: Extensible

Switch MAC | MAC | Eth | VLAN IP IP TCP{
Port | src dst | type ID Src Dst dport
re-implemented matching engine

G. BiarerrgA- GiusepperBianchi e

17



OpenFlow Controller

=>Injects/updates entries in the switch
= OpenFlow abstraction: pragmatic, platform agnostic
—>Same for HW or SW switches, same for multiple vendors
= OpenFlow protocol: messages over TLS/TCP
—>Controller = switch: flow mod rules
—>Switch - Controller: statistics, events, exceptions, ...

OpenFlow controller

In-bound or out-bound

OpenFlow Protocol

——— Giuseppe Bianchi

Example
Description Port MACsrc  MAC Eth VLAN IP Src IP Dest TCP TCP Action
dst type ID sport dport
L2 switching * 00:1f:.. * * * * * * Port6
L3 routing « - * - « - 5.6.5.% B « Port6
Micro-flow 3 00:20..  00:1f.  0x800  Vlanl 1234 5678 4 17264 Port4
handling
Firewall * * * * * * * * 22 Drop
VLAN * * 00:1f.. * Vian1l * * * * Port6,
switching port7,
port8
search lines
HH HIH
ch
Readily implemented in legacy TCAM . E E E ﬁ
‘mismatch.
Ternary Content Addressable Memory wal N
search line drivers

: . . f
——— Giuseppe Bianchi ———— carhdaa =01 101

18



Forwarding Abstraction OF1.0

SMT - Single Match Table

search lines n}a]{chline.\
=
o
o

match

SEEE
5605
5B

CHEHE o
vALNY

match
) » »
) 1
I search line drivers I :g?‘l\l.eh;l:]; .

Ternary Content Addressable Memory

——— Giuseppe Bianchi

OpenFlow architecture

OpenFlow
OpenFlow Switch specification penFloW ControIIer

OpgnFIow ‘o\0°°\
- Switch = M iwer
sw Secure ﬂp

7 Channel “*

Add/delete flow entries
Encapsulated packets
Controller discovery

——— Giuseppe Bianchi

19



Flow table

Match Actions Counters

Bytes + packets

1. Forward (one or more ports)

2. Drop

3. Encapsulate and send to controller

4. Header rewrite

5. Push/pop MPLS label / VLAN tag

6. Queues + bitrate limiter (bit/s)

7. Etc..
Switch | viaN | viAN| MAC | mac | Eth 1P 1P P[P L4 L4
Port D pcp src dst type Src Dst ToS | Prot | sport dport

Slide courtesy: Rob Sherwood

——— Giuseppe Bianchi

How to populate flow states?

Reactive vs Proactive
> Reactive
= Start with flow table empty
=First packet of a flow sent to controller
=Controller install flow entries

=Good for stateful forwarding:

- L2 switching, dynamic firewall, resource
management

=»Proactive
= Flow entries installed at switch boot

=Good for static forwarding:
—>L3 routing, static firewall, etc..

=Good only if you know all in advance...

Giuseppe Bianchi

20



How to populate flow states?

No match

4

=y
[

——— Giuseppe Bianchi

How to populate flow states?

Take «smart»
decision

Controller

Encapsulate &
forward

Giuseppe Bianchi

21



How to populate flow states?

Controller

| =g PadketF1 | ——,
—/

——— Giuseppe Bianchi

Centralization: not a panaceal!

=>Central view of the network (greatideafor network-
- Network as a “whole” wide states and «big

picture» decisions
> Network states

—>Multi-node coordination

=>Signalling & latency! Poor idea for local
states/decision, (way!)
=0(100 ms) better handled locally

(less delay, less load)

- 100ms = 20M packets lost @ 100 gbps

proactive flow states - pre-populate flow tables: solves only very specific cases, when you know...

Giuseppe Bianchi

22



Distributed controllers
the «common» way to address such cons

Proprietary controller extensions?

= gack to Babel?

A non-solution!
still slow path latency!!

@ «true» fast path solution: update
y——" forwarding rules in 1 packet

’ time - 5 ns @ 64B x 100 Gbps

3 ns = 60cm signal propagation...

——— Giuseppe Bianchi

Switches cannot remain dumb:
Starting the process of data
plane evolution

Giuseppe Bianchi

23



Models can be perfect and clean,
reality is dirty!

=>Match/action model: in principle very nice and
flexible for doing... whatever... in practice
=Need to match over many more fields

—>OpenFlow initially standardized basic ones (Ethernet, IPv4,
MPLS, VLAN tag, etc.); plenty of extensions needed

- And what about “custom” fields?
= Actions are limited to a rather small set

—>More header manipulation

—>More tunneling

->What about Forging packets? (e.g. ARP reply)
= Match/action is a static rule

—>dynamic behavior requires controller

—>Latency may kill — e.g. fast reroute upon failure

——— Giuseppe Bianchi

And hardware limitations as well...

=>TCAMs: expensive, used by manufacturers only
when strictly necessary

=Hash tables (e.g. cuckoo) are a much better implementation choice
=but no easy wildcard matching, predefined search keys

->Specialized ASICs are typically complex with a
number of hard limitations on table types, sizes,
and match depth

=Table types: gives away the beauty of the original “vendor neutral”
abstraction

= Brittle implementations — you need to know what’s the device you
control — back to the problem we wanted to address!!

Giuseppe Bianchi

24



Openﬂow (not so clean?)
evolution

In the beginning was simplicity. [Richard Dawkins]

——— Giuseppe Bianchi

Single Matching Table limitations

=>SMT: simple, powerful, elegant
abstraction...

=...but
= Single, huge, TCAM: not practical
->Wide: all header fields
- Big: all possible combinations of values relevant
=Packet processing in the real world may require
multiple steps/stages

—>Ingress/egress processing, ACL filtering,
sequential L.2/L.3 matching, etc

Giuseppe Bianchi

25



Multiple Match Tables (MMT)

=>Single Match tables are costly: all
possible combinations of header values
in a single long table

=>Solution: Multiple Match Tables (MMT)
> MMTSs are the HAL of OF 1.1

OpenFlow Switch

Ingress Packet +
Packet | hen| | 1 e || Pt
In metadata Packet : cute Out
——— Tagle > Ta1b|e L = x s —p] Ta:le W: ACHON el
Action Action Set Set !
Set={} Set e t
— S — —

——— Giuseppe Bianchi

MMT and implementations

=>MMT introduced in OF 1.1 are
actually much closer to real switch
implementation in specialized chips

Ingress Action
Physical Port VLAN Termina tion "gﬂﬁﬁs‘ PA?L St Apply Actions
Port Flow Flow MAC Flow el fowid - push /pop Physical
Table Table Table ol ow - edits Port
Table Table - output
\ Bridging ’

Flow
Ltee Group Table Entries
L2 Interface
Synchronize d ) L2 Multicast
V. L2 Fiood
o 50
MAC L3 Interface
| Learning | L3 Unicast
Flow
I rae | 13 Multicast
b= L3 ECMP

Abstract Switch Pipeline for Bridging and Routing

source: bigswitch.com

Giuseppe Bianchi

26



Switch pipeline

=> Existing switch chips implement a small (4-8)
number of tables whose widths, depths, and
execution order are set when the chip is fabricated

= Optimization of the pipeline can lead to very
different results depending on the context:

= A chip used for a core router may require a very large 32-bit IP longest
matching table and a small 128 bit ACL match table;

= A chip used for an L2 bridge may wish to have a 48-bit destination MAC
adtﬂress match table and a second 48-bit source MAC address learning
table;

= an enterprise router may wish to have a smaller 32-bit IP prefix table

ant?l a much larger ACL table as well as some MAC address match
tables.

[RMT] Pat Bosshart et al, “Forwarding Metamorphosis: Fast Programmable Match-Action Processing in Hardware for SODN”, ACM SIGCOM 2013.

——— Giuseppe Bianchi

Group Tables (OF 1.1)

= Packets of the same flow are applied the same
actions unless the table entry is modified by the
controller

=> Not good for some common and important cases
(e.g. multicast, multipath load balancing, failure
reaction, etc.)

= Solution: Group tables

= Goto table “group table n”

= List of buckets of actions

= All or some of the buckets are executed depending on the type
= Types of Group tables

= All (multicast)

= Select (multipath)

= Fast-failover (protection switching)

Giuseppe Bianchi

27



Group Tables (OF 1.1)

=>Fast failover

= Note that this is the first “stateful” behavior
in the data plane introduced in OF !!!

Group table
fast failover

Action bucket 1:
FWD PortA, ...

Action bucket 2:
=—3>{ | FWD PortB, ...

—
Action bucket 3:
FWD PortC, ...

Action bucket 4:
FWD Port D, ...

——— Giuseppe Bianchi

OF 1.2
= Extensible match (Type Length
Value)
= Support for IPv6, new match fields:

= source address, destination address, protocol
number, traffic class, ICMPV6 type, ICMPv6
code, IPv6 neighbor discovery header fields, and
IPv6 flow labels

> Experimenter extensions
= Full VLAN and MPLS support
= Multiple controllers

Giuseppe Bianchi




OF 1.3

=>Initial traffic shaping and QoS support

=Meters: tables (accessed as usual with “goto table”)
for collecting statistics on traffic flows and applying
rate-limiters

Meter Table

Meter identifier Meter band Counters

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Giuseppe Bianchi

OF 1.4

=> More extensible wire protocol
= Synchronized tables

=tables with synchronized flow entries
=>Bundles

=similar to transactional updates in DB
=>Support for optical ports

Giuseppe Bianchi

29



OF 1.5

Egress tables

Packet Ingress processing Pt
In Set pipeline fields
Ingress (ingress port, =
Port | Flow Flow metadata..) | Flow xecute
o | Table [—>{ Table f—»=++—>f Table —>{ Action (=3 S'OUP
Port . X Table
Action 0 1 Action n Set
Set={ Set
Egress processing e Packet
Set pipeline fields
Output (output port, Out
Port | Flow Flow metadata._) | Flow Execute Output
P Table —> Table —=++—> Table —>| Action >
. X Port
Action e e+1 Action| e+m Set
Set = Set
(ELEL e = first egress table-id

——— Giuseppe Bianchi

OF 1.5

=>Packet type aware pipeline
= Extensible flow entry statistics
= TCP flags matching

G—Barcni GiuseppesBianchiors

[e2
q




OF future extensions

[MAC13] Ben Mack-Crane, “OpenFlow Extensions”, US Ignite ONF GENI workshop, Oct 2013

=>The discussion on flow states
=The capability to store / access flow metadata that persists for
lifetime of flow (not just current packet)
= Potential to enable a variety of new capabilities:
- Fragment handling without reassembly
—>Relation between bidirectional flows (e.g., RDI)
- Autonomous flow learning + flow state tracking
“>MAC learning
—>TCP proxy
=Hierarchies of flows
—e.g. FTP control / data, all belonging to a user, etc.
=>Nothing done until OF1.5

But stay tuned until tomorrow — good chance we’ll have a surprise soon ©
Giuseppe Bianchi

Also abstraction “involutions” (?):
Typed tables

> “A step back to ensure wider applicability”
= A third way between reactive and proactive

= Pre-run-time description of switch-level
“behavioral abstraction” (tell to the switch
which types of flowmods will be instantiated at
run time)

= Limit types supported according to HW type

Typed tables patterns: Forwarding Elements (F:E.)
Stateful

(0}
penFlow Layer 3 Generic 802.1D
1.0 IPv4 i
Tunnel Forwarding (..
Stateless e
Constrained Generic ﬁ ;: %
OpenFlow 1.1 Tunnel ONF Forwarding Abstractions WG

Giuseppe Bianchi

31



OpenFlow evolutions: take home

=> Pipelined tables from v1.1

= Overcomes TCAM size o e openriom swten |
limitation —n e oo e e S L
= Multiple matches natural

>Ingress/egress, ACL, sequential L2/1.3 match, etc.

=> Extension of matching capapilities
= More header fields
= POF (Huawei, 2013): complete matching flexibility!

= Openflow «patches» for (very!) specific processing
needs and states

= Group tables, meters, synchronized tables, bundles, typed tables
(sich), etc

= Not nearly clean, hardly a «first principle» design strategy

= A sign of OpenFlow structural limitations?

——— Giuseppe Bianchi

Can we provide better data
plane programming
abstractions?

Yes! Tomorrow’s talk:
towards stateful dataplane

Giuseppe Bianchi

32



